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Abstract
In this paper we have calculated the escape rate from a meta stable state for
coloured and correlated noise driven open systems based on the Fokker–Planck
description of the stochastic process. We consider the effect of two correlation
times due to the additive coloured noise and the correlation between additive
coloured and multiplicative white noises. The effect of the noise correlation
strength on the rate has also been investigated.

PACS numbers: 02.50.Ey, 05.40.−a

1. Introduction

Ever since the seminal work of Kramers on the diffusion model of chemical reactions was
published about half a century ago [1], the theory of activated processes has become a central
issue in many areas of science [2, 3], notably in chemical physics, nonlinear optics and
condensed matter physics. Kramers considered a model Brownian particle trapped in a one-
dimensional well representing the reactant state which is separated by a barrier of finite height
from a deeper well signifying the product state. The particle was supposed to be immersed
in a medium such that the medium exerts a frictional force on the particle but at the same
time thermally activates it so that the particle may gain enough energy to cross the barrier.
Over several decades the model and many of its variants have served as standard paradigms in
various problems of physical and chemical kinetics to understand the rate in multidimensional
systems in the overdamped and underdamped limits [4–6], the effect of anharmonicities
[6, 7], rate enhancement by parametric fluctuations [8], the role of non-Gaussian noise [7, 9–
11], the role of a relaxing bath [12, 13], quantum and semiclassical corrections to classical
rate and related aspects [14–21]. The vast body of literature has been the subject of several
reviews [2, 3, 15] and monographs [17].
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The common feature of an overwhelming majority of the aforesaid treatments is that the
system is thermodynamically closed, which means that the noise of the medium is of internal
origin so that the dissipation and fluctuation get related through the fluctuation–dissipation
relation [22]. However, in a number of situations the system is thermodynamically open,
i.e., the dissipation and the random force are not related through the fluctuation–dissipation
relation [23]. In general, the origins of the noise in the open systems which exert two or more
random forces are different. The barrier crossing dynamics with multiplicative and additive
white noises aroused strong interest in the early eighties. Using a continued-fraction algorithm
Faetti et al [24] successfully showed for the first time that the escape rate changes from the small
value of the Kramers theory into the large relaxation rate of the Suzuki regime. It was shown,
furthermore, that the time required to attain equilibrium in a well after sudden application of
multiplicative noise (the activation time) is much shorter than Kramers’ relaxation time.

In most of the work states above, noise forces that are present simultaneously in the
stochastic systems were usually treated as random variables uncorrelated with each other.
However, noises in some stochastic processes may have a common origin. If this happens, then
the statistical properties of the noises should not be widely different and can be correlated. The
cross correlated noises were first considered by Fedchenia [25] in the context of hydrodynamics
of vortex flows in ellipsoidal containments with regard to fluctuations. Here the author
introduced cross correlation among the noises of common origin which appear in the time
evolution equation of dimensionless modes of flow rates. Fulinski and Telejko [26] also
considered the interference of additive and multiplicative white noises in the bistable kinetic
model, mentioning the physical possibility of cross correlated noises. However, very recently
Madureira et al [27] have pointed out the possibility of cross correlated noise in the realistic
model (ballast resistor) showing bistable behaviour and have also discussed the influence of
correlation of additive and multiplicative white noises on the activated rate processes. The
effect of correlation between additive and multiplicative noises is considered indispensable
in explaining phenomena such as stochastic resonance, phase transition, transport in the
superconducting junction and the transport of motor proteins etc [28–33]. Our aim in this
paper is to investigate the effect of coupling between multiplicative and additive noise on the
escape rate when the additive noise and the coupling between two noise terms are coloured
with nonzero correlation times τ1 and τ2.

The outline of the paper is as follows. In section 2 we introduce the Fokker–Planck
description of stochastic process and the calculation of the barrier crossing rate. The paper is
concluded in section 3.

2. The Fokker–Planck description of noise driven process and the calculation of the
barrier crossing rate

To begin with we consider noise driven dynamical systems in the overdamped limit. The
Langevin equation of motion for the present problem can be written as

dq

dt
= −V ′(q)

γ
+

q

γ
ζ(t) +

1

γ
η(t) (1)

where V ′(q) is the derivative of the following double well potential with respect to the particle
coordinate q, i.e.,

V (q) = − 1
2aq2 + 1

4bq4. (2)

γ in equation (1) is the dissipation parameter. A schematic representation of the potential
energy V (q) is shown in figure 1. There q = q0 and q = qb correspond to the bottom of the
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Figure 1. A schematic representation of the potential energy V (q) = − a
2 q2 + 1

4 bq4.

left well and the barrier top of the potential, respectively. ζ(t) and η(t) in equation (1) are
white and coloured noises. The two noise terms are characterized by their mean and variance
as

〈ζ(t)〉 = 〈η(t)〉 = 0 (3)

〈ζ(t)ζ(t ′)〉 = 2Dδ(t − t ′) (4)

〈η(t)η(t ′)〉 = D′

τ1
exp

(
−|t − t ′|

τ1

)
(5)

〈ζ(t)η(t ′)〉 = 〈η(t)ζ(t ′)〉 = λ
√

DD′

τ2
exp

(
−|t − t ′|

τ2

)
. (6)

Here τ1 and D′ are the correlation time and intensity of the coloured noise, respectively. D is
the intensity of the white noise and τ2 is the noise correlation time of the coupling between
multiplicative and additive noises.

The first detailed analysis of the stochastic process with coloured noise was ventured
by Sancho et al [34]. The authors derived a Fokker–Planck equation which is based on
an expansion in terms of the noise correlation time. The work of Hängi et al [35] on the
problem of barrier crossing driven by coloured noise, using non-perturbative analysis, shows
very good agreement between numerical and analytical results for a small noise strength.
Marchesoni [36] calculated the mean first passage time for the coloured noise driven systems
using Kramers’ approach. The papers [36, 37] are important critiques on this type of problem.

The random process with correlated coloured and white noise has been studied very
recently by Luo et al [30]. Here the authors have derived a Fokker–Planck equation applying
the Novikov theorem, Fox’s approach and the unified coloured noise approximation method.
Following [30] one can write the Fokker–Planck equation corresponding to the Langevin
equation (1) with the noise properties (3)–(6) as

∂ρ

∂t
=

[
∂

∂q

V ′(q)

A(q)γ
− ∂

∂q

(
g(q)

∂g(q)

∂q

)
+

∂2g(q)2

∂q2

]
ρ (7)
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where

A(q) = 1 + V ′′(q)τ1/γ (8)

and

g(q) =
[
D′ + 2λ

√
DD′

1 + 2τ2
q + Dq2

]1/2

γA
. (9)

The above Fokker–Planck equation takes the form

∂ρ

∂t
=

[
∂V ′(q)

∂q
− ∂Dq

∂q
+

∂2(D′ + Dq2)

∂q2

]
ρ (10)

in the limit λ = 0, γ = 1.0 and τ1 = 0.0. It bears an exact resemblance to the Fokker–Planck
equation developed earlier by Gammaitoni et al [38] for multiplicative and additive white
noises.

Now taking the contribution of the linearized form of the potential V (q) in the expression
for A, the Fokker–Planck equation (7) can be written as

∂ρ

∂t
= ∂

∂q

V ′(q)ρ

Aγ
+

∂lqρ

∂q
+

∂l1ρ

∂q
+ Q

∂2ρ

∂q2
− 2Dρ

A2γ 2
(11)

where

A = 1 + Zτ1/γ (12)

l = 3D

γ 2A2
(13)

l1 = 3λ
√

DD′

γ 2A2(1 + 2τ2)
(14)

and

Q = D′ + 2λ
√

DD′
1 + 2τ2

qe + Dq2
e

γ 2
(
1 + ω2

0τ1

γ

)2
. (15)

Z in equation (12) is the value of curvature of the linearized potential around the fixed point
and qe in equation (15) is the solution of the algebraic equation

V ′(qe) + lqe + l1 = 0. (16)

Thus qe is the equilibrium value of q in the absence of Q [33]. ω0 in equation (15) is the
linearized frequency of the potential around q0.

Now multiplying exp
(

2Dt
A2γ 2

)
on both sides of the Fokker–Planck equation (11) followed

by the transformation

W(q, t) = ρ(q, t) exp

(
2Dt

A2γ 2

)
(17)

we get

∂W

∂t
= ∂

∂q

V ′(q)W

Aγ
+

∂lqW

∂q
+

∂l1W

∂q
+ Q

∂2W

∂q2
. (18)

Recasting the above equation in the form of a continuity equation we identify j as the current

∂W

∂t
= − ∂

∂q

[
−V ′(q)W

Aγ
− lqW − l1W − Q

∂W

∂q

]

= − ∂

∂q
j (q, t). (19)
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In the stationary state j = constant, i.e., ∂W
∂t

= 0. j looks like

j = −V ′(q)W

Aγ
− lqW − l1W − Q

∂W

∂q
. (20)

Rearranging the above equation as

∂W

∂q
+

V ′(q)W

AγQ
+

lq

Q
W +

l1

Q
W = − j

Q
(21)

and then integrating between q0 and B with the integrating factor exp
(∫

V ′(q)/(Aγ ) + lq + l1
Q

dq
)
,

in the following form:

d

dq

[
W(q) exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)]

= − j

Q
exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
(22)

we obtain[
W(q) exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)]B

q0

= − j

Q

∫ B

q0

exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq. (23)

The constant current or flux across qb is thus,

j = −Q

[
W(q) exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)]B

q0∫ B

q0
exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq

. (24)

Since the value of W(q) at B is zero, i.e., W(B) = 0, we further obtain,

j = Q
W(q0) exp

(V (q0)/(Aγ ) + lq2
0 /2 + l1q0

Q

)
∫ B

q0
exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq

. (25)

We are now in a position to calculate the population in the left well at zero current. For j = 0,
equation (20) becomes

∂W

∂q
= −

V ′(q)

Aγ
+ lq + l1

Q
W. (26)

Integrating the above equation from q0 to q (an arbitrary point in the left well) we obtain

W(q) = W(q0) exp

([
V (q0)/(Aγ ) + lq2

0

/
2 + l1q0

] − [V (q)/(Aγ ) + lq2/2 + l1q]

Q

)
. (27)

Thus the population in the left well at j = 0 is given by

na =
∫ q2

q1

W(q0) exp

([
V (q0)/(Aγ ) + lq2

0

/
2 + l1q0

] − [V (q)/(Aγ ) + lq2/2 + l1q]

Q

)
dq

(28)

where q1 and q2 are two points around q0.
The rate of escape k is given by

k = j

na

(29)
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which we thus obtain from (25) and (28) as

k = Q∫ B

q0
exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq

∫ q2

q1
exp

(−V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq

. (30)

We now make use of the following linearization of V (q) around q0 and qb. For the integral∫ B

q0

exp

(
V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq (31)

we write V (q) as

V (q) = V (qb) − 1
2ω2

b(q − qb)
2 (32)

and let q0 → −∞ and B → +∞. Then around qb, the forms of A, l and l1 become

Ab = 1 − ω2
bτ1/γ (33)

lb = 3D

γ 2A2
b

(34)

and

l1b = 3λ
√

DD′

γ 2A2
b(1 + 2τ2)

. (35)

Similarly for the integral∫ q2

q1

exp

(
−V (q)/(Aγ ) + lq2/2 + l1q

Q

)
dq (36)

we use

V (q) = V (q0) + 1
2ω2

0(q − q0)
2 (37)

and let q1 → −∞, q2 → +∞. The forms of A, l and l1 around q0 look like

A0 = 1 + ω2
0τ1/γ (38)

l0 = 3D

γ 2A2
0

(39)

and

l10 = 3λ
√

DD′

γ 2A2
0(1 + 2τ2)

. (40)

Using equations (32) and (37) in the expression for k in equation (30) we obtain

k = 1

πγ

√
a0ab

A0Ab

exp

(
− E0

A0γQ

)
exp

(
6abω

2
bE0 − b2

b

16abAbγQ

)
exp

(
− b2

0

4a0γA0Q

)
(41)

where

a0 = 1
2ω2

0 + A0l0γ /2 (42)

b0 = l10γA0 (43)

ab = 1
2ω2

b − Ablbγ /2 (44)

bb = l1bγAb + ω2
b

√
3E0. (45)

Here E0 is the activation energy E0 = V (qb) − V (q0 = 0). The above expression (41) is the
Kramers’ rate for the coloured and correlated noise driven system. We are now in a position
to check the several limits of the rate expression (41). First, we consider λ = 0 and D = 0.
Then equation (41) takes the form
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Figure 2. Plot of the rate constant k versus the noise correlation time τ1 for a = 1.0, b = 1.0 and
D = D′ = 0.05.

k =
√

2a

πγ

√
1

A0Ab

exp

(
−E0(1 + 2aτ1)

γD′

)
. (46)

However, the above rate expression reduces to the following form in the limit aτ1 < 1

k =
√

2a

πγ

√
1

1 + aτ1
exp

(
−E0(1 + 2aτ1)

γD′

)
. (47)

The pre-exponential factor in the above expression resembles that of the earlier result developed
by Hängi et al [35] and the exponential factor in the above expression shows similarity with
the result developed by Marchesoni [36].

One can now check that the above result (41) reduces to the standard result of the escape
problem in the overdamped limit. Let us consider that the multiplicative noise strength D is
zero and the dissipation parameter γ and the additive noise are related through the fluctuation–
dissipation relation by

〈η(t)η(t ′)〉 = 2γ kbT δ(t − t ′) (48)

in the Markovian limit. Here kb is the Boltzmann constant and T is the temperature of the
thermal bath. Under these conditions we have

A0 = Ab = 1 (49)

a0 = 1
2ω2

0 b0 = 0 ab = 1
2ω2

b bb = ω2
b

√
3E0 (50)

and

Q = kbT

γ
. (51)

Putting the above equations (49)–(51) in equation (41) we obtain the standard result [2] for
the escape rate as

k = ω0ωb

2πγ
exp

(
− E0

kbT

)
. (52)

Finally to verify the proposed theoretical result (41) we calculate the mean first passage time
solving the Langevin equation (1) employing Heun’s algorithm. In figure 2 we plot the rate



3360 P Majee and B C Bag

constant against the correlation time of the additive coloured noise for both λ = 0 and λ �= 0.
The solid and dotted curves correspond to the analytical and numerical results, respectively.
Thus theoretical estimation of the effect of cross correlation of the noises on the rate constant
shows fair agreement with the numerical results.

3. Conclusions

In summary, the phenomenon of barrier crossing in the noise driven dynamical system is
investigated in the present paper, when both the additive noise and the coupling between
additive and multiplicative noise are coloured with different values of noise correlation times
τ1 and τ2, based on the Fokker–Planck description of the stochastic process. Here we consider
how the rate is affected by several factors such as the correlation time of the additive coloured
noise, the correlation time due to coupling between additive and multiplicative noises, the
strength of the noise correlation and dissipation. We have checked that our result reduces to
the standard result when the multiplicative noise strength becomes zero and additive noises
are related to the dissipation through the fluctuation–dissipation relation in the Markovian
limit. Since in certain situations [24–31] both the multiplicative and additive noise may have
a common origin and may be coupled as well, we hope that our present calculation is likely to
be important in the interpretation of experimental findings.
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